OVERVIEW OF THE UNIT ROOT TEST

Kimio Morimune, Kyoto University

1 Univariate Series
1.1 Eyeball test

Here, we examine how often the series cross the x-axis. For example, the Nikkei500 series crosses the
x-axis only seven times in fifteen years in Figure 1. A series with this property is often considered to be a

candidate for a unit root series.
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The first differenced series
When the original series shows the property of small number of crossing, the first difference of the
series, AX =X —X . is plotted. As it is shown in Table 2, the first difference crosses the x-axis as often as a

normal stationary series does.
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Table 1 AR(3) Estimation of Nikkei300

Estimated Coeff Standard Error t value P-value
Intercept 877 5.584 1.6 .12
K(-13 1.37 0.059 23.0 0.00
X{-2) -(3.49 0.097 -5.1 0.00
XD 0.12 (0.05% 2.1 0.04
R 0.99 modified R 0.99
W statistic 2.02 Durbin’s b 0,16 (0.88

Nikkei300 is the dependent variable. The number of observations is 283 from 1972M4 to 1995M10.

1.2 Estimating the Autoregressions
Autoregressive equation is of the form

(1 X =o+Pt+¢ X +¢, X, +¢, X _ +0, X _ +u .

Table | shows the estimated coefficients and values of the test statistics. In the unit root analysis, the AR
equation is transformed so that the test statistic is easily calculated. The lagged variables of order greater than or

equal to 2 in the equation 1 are transformed into the difference, and the regression equation is now
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{(2) X=o+BtroX +7v, AX +y,AX _ +7.AX  +u o= O, +0, +6, +0,.

The null hypothesis of the unit root is H :¢=1. This results from the associated polynomial
fx) =5 -0 X" —0.x = ¢x". ¢ is | so that one of the zeros is 1. The test statistic for testing H 0 =1 is the t-
ratio of the ¢ coefficient. The same test statistic is calculated by the t-ratio of the ¢ coefficient in the auxiliary

regression
(3) AX =o+Bt+pX  +7 AX  +y, AKX  +y, AX_ +u , p=ad-1.

Table 2 gives estimated values of coefficients. The coefficient of X(-1} is close 10 0, and its significance must
be tested. The t-ratio is used in the test, however, the null distribution is different from the standard normal

distribution. This will be explained later.

Table 2 Transtormed AR(3) Estimation of Nikkei500 {AX is the dependent variable)

Estimated Coelff Standard Error t value P-vaiue
[ntercept 8.77 5.584 LG 012
X5 -0.01 (.005 -1.3 77
AX(-1) 0.37 (.059 6.3 0.00
AX(-2) -0.12 0.059 -2 0.04
R* 0.13 modified R” 0.12
DW statistic 2.02 Durbin’s h

ANikkei500 is the dependent variable. The number of observations is 283 from 1972M4 1o 1995M10.

1.3 AC of Stationary Series.

In the Box-Jenkins approach, the sample auwtocorrelation (AC) function of a series is always
calculated and used to determine the lag order of the moving average process. The sample AC is usuaily found
to be insignificant except for some lower orders. In the Nikkei300 series, the sample AC values gradually
diminishes, but the speed of decrease is slow. It requires 24 months before the AC value reaches 1/2. {If the data

goes back ro 1972, it takes 46 months to reach 1/2.) This slow decrease in the AC function is regarded as a

typical characteristic of the unit root series,

Once the first difference of the original series is taken, the sample AC is insignificant {very smalf in

value) after the first order.
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1.4 Random Walk Process

The standard random walk with drift is defined as

(4} AKX =X -X  =p+e.t=12,-T
where the error term €, is a white noise. The drift | is a fixed constant. By summing the series from the initial

value,
(3 X=X +n, +th+e. N, =58

The drift becomes a deterministic trend in the original series. The second term is the sum of white noise. When
the drift is not included in (4}, (5) consists of the initial value and the standard random walk. The 1nitial value

! Critical values are -3.4 (5%) and -4.0 (1%).
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stays always in the onginal series, and setting X, and ¢ to 0, the random walk i3 characterized by Figure 4.
(When the variance of the white noise is set to unity, the white noise series is distributed around 0. The
probability of crossing 2 and -2 is five percent. ) The random walk series rarely crosses the x-axis. Once the

series 1§ away from the x-axis, the probability of crossing x-axis { mean reverting ) is zero.
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1.5  ARIMA Process

Assume the error term of (4), AX =u+uo , has the second order autoregressive form such as
u =, u_ -+, u_ -+ u_ +e where £ is a white noise. Substituting {4) into the autoregression, it follows an
ARIMA (2,1,0) process such as

(6) AX =p+0 AX  +0 AX  +06, AKX  +E.

This is callied the Cochrane-Orcutt transformation in econometrics. 1" in ARIMA stands for the integrated

process. The arder of integration is 1 which is denoted as I{1).
If the error term has a third order autoregression such as u, =¢ u_+¢, u_, +¢ v _+¢ and the

regression is AX =[t+u , the regression is transformed as

(7} AX4 =+ Btm’*p X\—l P‘““‘bl !"f}'&ix-: + {ff’!: AKX 2 & p =do {bl !‘pz é}"\

where the level variable is X . This regression is the same as (5) when [ and p are 0. An alternative

transformation 1s
AX =o+Bt+¢"AX +¢"AX  +pX  +e, p=l-¢ -9, -9,

where the tevel variable is X, . From the second transformation, it may be easy to see that the lag order of the

ARIMA regression is shorter by one under the null hypothesis.

1.6 Spurious Regression

Assume there are two I{1} variables which are formed by independently distributed random variables
such as x =%  wand y =2, v . Since w, and v, are independent, x and y, are also independently
distributed. However, as Figure 5 shows, the scatter diagram between the two variables has a spurious linear
relationship. This linear relationship is called the spurious regression and is caused by the common stochastic
trend in the both variables. The linear relationship is estimated as

v, =347(95)+0.83(20) x,
where the values in parentheses are the t-ratios. If we do not know both variables are random walks, this
regression could be interpreted as highly significant. It s necessary to test the unit root in each variable to avoid

the spurious regressions.
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Figure 5. Two uncorrelated Random Walks (fefl) and the Scatiered Dingram (right)
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In Figure 5, the random walks are plotted from the 200™ to 3007 observations. If all the data are used
in the plot, the scatter diagram gives a different impression from Figure 5. If it is possible to record data from
the beginning of the history, we may not have the problem of spurious regressions. bui we usually do not know
when the history started.

Fig 6 Transition of two Random Walks
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1.7 Commeon Factor Approach to the Unit Root Test

The unit root test proposed by Dickey-Fuller (1981) is explained below. The regression under the

alternative hypothesis is

(8y (X —a-Po=u u=¢u +e.

Usnder the aull hypothesis § =, the regression equation is
(10 AX =B+eg,.

The test is performed by estimating the regression equation (X, —a—Bi)=u, by least squares. Writing the

residual as ,, the test statistic is calculated as the t-ratio of the p=¢- coefficient in
(1 Al =pi  +error

This t-ratio i1s denoted <t _, and it has been proved that T, weakly converges to a simple function of the de-

meaned and de-trended Brownian motion ﬁx(r) . This convergence is written as
. IB.dB ()

{12 , —
1/ B, {r)dr

The critical value of the test statistic is calculated by simulation. (The 5% polat is -3.4, and the 1% point is -4.0.)
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1.8 Dickey-Fuller Method

The same test statistic can be calculated as the t-ratio of the p coefficient in the equation
(13y Ay =a+ Bt+py, +g

The equation (13) should be taken as an auxiliary regression to calculate the t-ratic by one step. This equation
never gives a DGP (Data Generating Process) under the null hypothesis H, :p=0. It requires not only p=0
but also fi=10. Dickey-Fuller based the unit root tests on (13), then they also proposed to test H :p=B=0 by
the F-ratio statistic. If (13) is derived from (9) carefully, it is

AX, =pX  +{o oo+ B+ B—¢+e .
Then ¢ =1 automatically excludes the deterministic trend,

1.9  Sample AC Approach

As 1t was explained by Figure 3, the sample AC is an intuitive measure to identify the unit root. In
fact, the difference between the sample AC and | can be used as the test statistic. This statistic is the same as the
least square estimator of p in (10). The weak convergence is given as follows and a Table of the critical values
is available. This test is easy to use if a software for the regression analyses is capable of calculating the sample
AC function of regression residuals,
$6, 40, B, (0dB,(r)

; [B,ydar

(14) TAC() -1 =T

1.10 Augmented Dickey-Fuller Test
If the regression is (8) but the error term has a higher order autoregression such as

u =i +du_ +--+du ,, the regression equation (10} for the test is replaced by
(15) AL = pl  +p AL ++p Al +error, p=g 4+, ~1

or Al =pld +pAd +-+p Al +error, equivalently, The test statistic is the t-ratio of p_in either equation

and the critical values are the same as those of (12). The same test statistic can be calculated from the following

auxiliary regression.

{16) AX =+ ﬁt-‘rle_i+piAX'_J+---+pMAX +E L, pEg G~

Topl

The same test follows from the regression. . . .. .. . .
AX =0+ P+pAX +-+p AX  +pX | +E
as it was the case in (15). Interpretation of the test from the viewpoint of the sample autocorrelation or the

sample partial autocorrelation does not follow in the higher order autoregression.

1.11  Discontinuous Trend Unit Boot Test

Many of the US macro series are found to have the unit root by Nelson and Plosser (1982). See the
iast column in Table 3. Perron and Vogelsang extended the test so that it allows for a discontinuous trend. It was
found that many of the US macro series were stationary by applying the Perron test. See the second to the last
column in Table 3. The deterministic trend breaks at a particular break point in the sample period. It is naturally
difficult to determine the break point but also it was criticized that the break point is chosen after data
inspection. Morimune and Nakagawa (1999) analyzed that the misspecified break point causes bias or explosion
in the test statistic asymptotically and proposed to use the break interval instead of the break point in applying
the Perron test. Many US macro series turned out to be non-stationary again. See the third from the last column
in Table 3,
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Break Intervch 2
Tabie 3:JUMPED BREAK INTERVAL TEST

¢

Model  Jumped p coefficient t ratio Dhagnostics Diagnostic by Diagnostic by
[nerval Perron test ADF {est
CPI A 30-42 -0.03 (-1.59) DS DS D§
Common Stock Price C 30-36 120 (-3.70) DS TS DS
Money Stock A 30-36 0.14 (-3.10} DS TS DS
GNP deflator A 30-36 (.14 {-3.30 DS T8 DS
Real Wages C 30-36 .33 (-3.62) DS TS DS
intercst Rate A 30-44 0.15 (1.913 DA DS TS
Real GNP per capita A 30-37 -0.43 (-3.75) D3 TS oS
Nominal GNP A 30-36 126 (~2.38) DS TS DS
Renl GNP A 30-36 (.50 (-3.79} TS TS DS

DS implies difference stationary, ie., & ditferenced sereis is stationary.
TS implies trend stationary, ie. 2 statiopary series with trend.
A: Regression with intercept break only.

& Regressien-with-intercept-and-trend-broaks.

Neison and Plosser found these US macro series are mostly DS, Perron found them mostly TS by adding a break inA
Most of these series are found DS by using break intervals.

1.12  Over and Under Specification

If the DGP is an ARIMA series but the autoregression is estimated, the coefficient p of the additional

 term. is estimated as

. $X AX
(rn Ay, =0+ Bt+py  +p Ay o bp by +E D :M
X
X is the de-meaned and de-trended series, and § is super consistent with 0, then the effect of the additional

term in calculating the regressed value is of order O(1/ JT }. If the DGP is the stationary autoregression and the
ARIMA regression is estimated, then the estimated coefficients are inconsistent. All classical results remain the

same in the unit root analyses.

2 Vector Autoregression

2.1 Cointegration and the Super Consistency

The regression equation is of the form y =B x _+¢& where g is a white noise with variance ¢ . The
regressar X is I, v, where v is a white noise with variance ¢ and, for simplicity, v, and g are
independently distributed. This impiies both x_ and y, are random walks but the linear relation y, —Bx =g is
stationary. This stationary retationship among the integrated variables is called cointegration. Coiategrated
relationships produce the consistent least square estimation which is totally different from the spurious
regression case. The normalized difference of the least square estimator from the true coefficient is

- T 1 . i

(18) TRE-F) =mfm..»x,€ “—“WLBX(T)dB,(f) »W}L“ g = B (r).

Since the speed of convergence in the cointegrated regression is faster than that in the classical regression, the
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least square estimator is said to be super consistent. Further, the t-ratio of the § coefficient is asymptotically
distributed as normal. When v_ and € are contemporanecusly correlated, the auxiliary regression

y =[x +7Ax, +E,
is used in the estimation to avoid a higher order bias. This is called the dynamic regression by Phillips and
Loretan (1991).

2.2  Multiple Cointegrations and Identification

Even if the staticnary relationship includes more than two integrated variables, super consistency is
still valid. However, if the second relation exists but is unknown, then the least square estimator is inconsisient,
For example, the foliowing two linear relationships are assumed among the three integrated variables.

(19 y =Px +ye +u,,

2m x =8 +w .

The least square estimator applied to the first equation is degenerate since the two right-hand side variables are

cointegrated.
If the second equation is known to exist, all coefficients are identified and can be coasistently

estimated. This is proved as follows. Cointegration (20) implies

20 X -0z, =W =w,

where 8 is super consistent and w, is stationary. Using (21) to replace x, in (19}, it follows

(22) y, =xz,+BW% +u, k=(y+B5
which is a cointegraied refation between y, and z . Then

(23 y —%z =9V, 20% +u

where X is super consistent and ¥, is stationary. B can be consistently estimated by the least square estimator
associated with the stationary regression (23) as long as w, and u, are independently distributed. Parameters are
identified by using both the integrated and the stationary refations.

2.3 The Error Correction Model (ECM)

There are two relations between two variables. One Is cointegration .
24 yiiifx +u u =pu_+¢g . |p|<t,
where £ is a white noise with variance o°, and a spurious regression
(25) Ay = YA 4V,

where v, is a white noise with variance &7 . These two relations form a vector series as

L )

The VAR representation of the form z = A z  +Eg 18

3 - - -
26) xq__ 1V =B pelxa) 1 &

y, | oy=BiBvt-p) w-Bly., v-Bly -Bj)v
and the BCM of the form z = A & _ +E I8
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2.4 Estimator

The least square estimator is consistent. The least square estimator does not require any knowiedge
on the rank of cointegration (the number of cointegrations) in the coefficient matrix.

Maximum iikelihood estimator was developed by Johansen (1995) which is super consistent.
However, the rank of cointegration must be determined first. The Johansen method further requires knowledge
on how the constant vector is specified, and how the deterministic trend term is specified in the ECM,

Fig 8: Cointegrated Series and the Scatter Disgram
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Equation (27): 8=0.8. v=0.5. p=0.5. Emor variance =1,

REFERENCE

Barnerjee, A, Dolado, I. I, Galbraith, J. W., and Hendry, D. F (1993), Co-Integration, Error Correction, and
The Econometric Analysis of Non-Stationary Data, Oxford University Press.
Dickey. D. A. and Fuller, W. A. (1981}, “Likelihood ratio statistics for autoregressive fime series with a unit

toot,” Econometrica, 49, 1057-72.

Engle, R. F., and Granger, C. W. J. (1987), "Co-integration and Error Correction: Representation, Estimation and
Testing," Econometrica, 55, 251-276.

Hali, ., and Heyde, C. C. (1980}, Martingale Limit Theory and Applications, Academic Press.

Hatanaka, Michio (1997), Time series based Econometrics, Oxford University Press.

fohansen, 8. (1995), Likelihood-based inference in cointegrated vector autoregressive models, Oxford

' University Press. T TR T e RN mEiEa e il e

Morimune, K. and Nakagawa, M. (1999), “The discontinuous trend unit root test when the break point is
misspecified," Mathematics and Computers in Simulation, Vol 48, pp. 417-427, 1999,

Netson, C. R., and Plosser, C. 1. (1982). "Trends and Random Walks in Macro-econcmic Time Series,” Journal
and Monetary Economics, 27, 3-27

Perron, P, and Vogelsang, T. F. (1993), "Erratum for the great crash, the oil price shock, and the unit root
hypothesis,” Econometrica, 61, 248-249.

Phillips, P. C. B. (1986), "Understanding Spurious Regressions in Econometrics,” Jourmnal af Econometrics, 33,
311-340

Phillips, . C. B. and Loretan, M. {1991}, "Estimating long-run economic aquilibria”, Review of economic
studies, 58,407-438,

Philtips, P. C. B. ({987}, "Time Series Regression with a Unit Root," Econometrica 55, 277-301.

~ 1136~



